2.5 GENERAL MOMENTUM EQUATIONS

In the previous sections of this chapter, we determined velocity distributions for
some simple flow systems by applying differential momentum balances. The
balances for these systems served to illustrate the application of the principle of
conservation of momentum. In general, when dealing with isothermal fluid
systems which do not involve changes in compositions, we can solve problems by
starting with general expressions. This method is better than developing formula-
tions peculiar to the specific problem at hand. The general momentum balance is
called the equation of motion or the Navier-Stokes’ equation; in addition the
equation of continuity 1s frequently used in conjunction with the equation of motion.

The continuity equation is developed simply by applying the law of conserva-
tion of mass to a small volume element within a flowing fluid. The principle of
conservation of mass is quite simple to apply and we assume that the reader has
used it in developing material balances. We develop the equation of motion by
applying the law of conservation of momentum which, in its general form, is an
extension of Eq. (2.1). With the aid of these two equations, we can mathematically
describe the problems encountered in the previous section, as well as more compli-
cated problems. However, as we shall see, these expressions are rather cumbersome,
and exact solutions can be found only in very limited cases. Hence these equations
are used primarily as starting points for solving problems. The equations of
continuity and motion are simplified to fit the problem at hand. Although theoreti-
cally these equations are valid for both laminar and turbulent flows, in practice
they are applied only to laminar flow.



2.5.1 Equation of continuity

Consider the stationary volume element within a fluid moving with a velocity
having the components v,, v,, and v,, as shown in Fig. 2.4. We begin with the
basic representation of the conservation of mass:

( rate of mass ) ( rate of ) ( rate of )

(2.35)

accumulation mass in mass out

First, look at the faces perpendicular to the x-axis. The volume flow rate of
fluid in across the face at x is simply the product of the velocity (x-component) and
the cross-sectional area, yielding Ay Azv,|,. The rate of mass in through the face
at x is then Ay Az(pv,)|,. Similarly, the rate of mass out through the face at x + Ax
18 Ay Az(pv,)l,+ ax- . We may write analogous expressions for the other two pairs
of faces, and then enter all the terms that account for the fluid entering and leaving
the system into the mass balance, and leave the accumulation term to be developed.

The accumulation is the rate of change of mass within the control volume
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Fig. 2.4 Volume element fixed in space with fluid flowing through it.

The mass balance thus becomes
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Then, dividing through by Ax Ay Az, and taking the limit as these dimensions
approach zero, we get the equation of continuity:
op 0 0

pvx+_

o _ _|9 9l 2.
o o oy P T g P (2.37)

A very important form of Eq. (2.37) is the form that applies to a fluid of constant
density. For this case, which frequently occurs in engineering problems, the
continuity equation reduces to

+ 2+ =0 (2.38)

2.5.2 Conservation of momentum

When Eq. (2.1) 1s extended to include unsteady-state systems, the momentum
balance takes the form:

rate of rate of rate of sum of
momentum | = | momentum| — |momentum| + [forces acting|. (2.39)
accumulation in out on system

For simplicity, we begin by considering only the x-component of each term in
Eq. (2.39); the y- and z-components may be handled in the same manner.
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Fig. 2.5 Momentum transport (x-component) due to viscosity into the volume element.
(a) Directions of viscous momentum transport. (b) Directions of forces.

Figure 2.5(a) shows the x-components of t as if they were made up of viscous
momentum fluxes rather than shear stresses. On the other hand Fig. 2.5(b) shows
the x-components of 7 as stresses. Note the appearance of 7, which by the scheme
of subscripts represents the transport of x-momentum in the x-direction. Alterna-
tively, we view 7., as the x-directed normal stress on the x-face, in contrast to
7, Which we view as the x-directed shear stress on the y-face.



Let us now develop the terms that enter into Eq. (2.39). First, the net rate at
which the x-component of the convective momentum enters the unit volume, is

Ay Az(pvxvxlx - pvxvx|x+Ax) + Ax Az(pvyvx'y - pvyvx'y+Ay)
+ Ax Ay(pvzvxlz - vzvx|z+Az)' (2'40)

Similarly, the net rate of viscous momentum flow into the unit volume across the
six faces is

Ay AZ(Txxlx - 1xx|x+Ax) + Ax AZ(Tyx'y - Tyx|y+Ay) + Ax Ay(rzx|z - sz|z+Az)° (241)

The reader who has not come in contact with this development before might find
a brief explanation of the meaning of pv,v, and pv,v, useful. Remember that we
are applying the law of conservation of momentum to the x-component of momen-
tum. Thus v, represents the x-velocity, and the rate at which mass enters the
system through the y-face is given by Ax Azpy|,. Hence the rate at which
x-momentum enters through the y-face is simply the product of mass-flow rate and
velocity :

Ax Azpvy,|,.

In most cases, the forces acting on the system are those arising from the



pressure P and the gravitational force per unit mass g. In the x-direction, these
forces are

Ay Az(Pl; — Plciax), (242)

and
pg. Ax Ay Az, (2.43)

respectively. Here g, is the x-component of the gravitational force. Finally, the
rate of accumulation of x-momentum within the element is

0
Ax Ay Az(é_t pvx). (2.44)
Entering Eqs. (2.40)—(2.44) into the momentum balance, dividing through by
Ax Ay Az,and taking the limit as all three approach zero, we obtain the x-component
of the momentum conservation equation:
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The y- and z-components, which we obtain in a similar manner, are
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To describe the general case, all three Equations (2.45), (2.46), and (2.47 are needed.
Vector notation can reduce these to one equation which is just as meaningful as



all three. The quantities pv,, pv,, and pv, are the components of the mass velocity
pv; similarly g, , g,, and g, are the components of g. Vectorial representation of a
velocity and an acceleration is familiar to most readers. However, the terms 0P/0x,
0P/0y, and 0P/0z all represent pressure gradients. By itself, pressure is a scalar
quantity, but the gradient of pressure is a vector, denoted, in general by VP (some-
times written grad P).

As a simple example to illustrate the necessity of thinking about pressure
gradients as vectors, take a tank of water. At any level L, measured from the
surface of the water, the pressure is pgL. If the z-coordinate 1s that perpendicular
to the surface of the water, then the pressure difference in the water in the z-direction
is pgL. Note that we have to specify the direction in which the difference in pressure
is measured ; it would not be enough to say simply that the difference in pressure is
pgL because one could compare the pressure at two different points at the same
level ; hence the difference would be zero. To be specific, the pressure gradient at
the level L must be denoted by 0P/dx = 0,0P/dy = 0,and 0P/0z = pg; being more
general, the pressure gradient is VP. Therefore
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and V can be thought to be an operator, such that
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The terms pv,v,, pv.v,, pvo,, pv,v,, €tc., are the nine components of the con-
vective momentum flux pvv, which is the dyadic product of pv and v. Also 7,,, ,,,
etc., are the nine components of .

The vector equation representing Egs. (2.45)—(2.47) is finally written:

% pv = —[V:-pow] — VP — [V-1] + pg. (2.48)

Note here that VP is the product of a vector (V) and a scalar (P), yielding a
vector. To interpret the mathematical nature of V-pwvv and V-7 in physical
terms is more difficult. However, for sufficient understanding of this text it is
enough if the reader accepts them as mathematical shorthands of the approprate
terms in Eqs. (2.45)—(2.47).

So far we have developed a general expression, namely, Eq. (2.48), for the law
of conservation of momentum. However, in order to use this equation for the
determination of velocity distributions, it is necessary to insert expressions for the
various stresses in terms of velocity gradients and fluid properties. The following
equations are presented without proof because the arguments involved are quite
lengthy. For Newtonian fluids, the nine components of t are written as follows.!
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These equations constitute a more general statement of Newton’s law of viscosity
than that given in Eq. (1.2), and apply to complex flow situations. When the fluid
flows between two parallel plates in the x-direction so that v, is a function of y
alone, where the y-direction is perpendicular to the plates’ surfaces (Fig. 1.4), then
Egs. (2.49)-(2.54) yield

Txx = Tyy = Tz = ryz = Ty, = 0 and Tyx = —’T(avx/aJ’),

which is the same as the simple relationship previously used to describe Newton’s
law of viscosity. Also in many other problems of physical significance in which
v, is recognized as a function of both y and x, we find that dv,/dy > dv,/0x, and
the simple rate Eq. (1.2) can be used for t,, as an example with a high degree of
accuracy rather than Eq. (2.52).



2.5.3 Navier-Stokes’ equation, constant p and %
The continuity equation for constant density is given by Eq. (2.38) or in vector
notation, ‘

V-v=0. (2.55)

Regarding the conservation of momentum, we can write Eqs. (2.45)—(2.47) with
constant p and 7:*
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* This development is the subject of Problem 2.7.
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The bracketed terms on the left side of these equations merit attention.
Consider a control volume of fluid moving in space with no mass flow across its

surface. The change in the x-component of its velocity with time and position is
given by
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and since the x-component of acceleration is defined as
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This is the acceleration one would feel if riding with the control volume of fluid.
We also refer to this time derivative of velocity, Dv,/Dt, as the substantial deriva-
tive. Analogous expressions exist for the y- and z-directions. In general, one

notation can represent all three substantial derivatives, so that Egs. (2.56)—(2.58)
become

p@ = —VP + nV% + pg. (2.62)
Dt
Equation (2.62), or Egs. (2.56)—(2.58) which taken together represent the expansion
of Eq. (2.62), 1s often referred to as the Navier-Stokes’ equation. In the form of Eq.
(2.62), we can recognize it as a statement of Newton’s law in the form mass (p) x
acceleration (Dv/Dt) equals the sum of forces, namely, the pressure force (— VP),
the viscous force (nV2v), and the gravity or body force pg.

2.6 THE CONSERVATION OF MOMENTUM EQUATION IN CURVILINEAR
COORDINATES

In many instances rectangular coordinates are not useful for analyzing problems.
For example, in the Hagen-Poiseuille problem discussed in Section 2.4, we
described the axial velocity v, as a function of only a single variable r by employing
cylindrical coordinates. If rectangular coordinates had been used instead, v, would



have been a very complicated function of x and y. Similarly, it would have been
difficult to describe and apply the boundary condition at the tube wall.

The equations of continuity and motion in Section 2.5 have been given in
rectangular coordinates; spherical or cylindrical coordinates are presented in
Tables 2.1-2.7.



Table 2.1 The continuity equation in different coordinate systems*

Rectangular coordinates (x, y, z):
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Cylindrical coordinates (r, 8, z):
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Spherical coordinates (r, 8, ¢):
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* Tables 2.1-2.7 are from R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Wiley,
New York, 1960, pages 83-91. Reprinted by permission.



Table 2.2 The conservation of momentum in rectangular coordinates (x, y, z)
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Table 2.3 The conservation of momentum in cylindrical coordinates (r, 6, z)

In terms of 7 :
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* The term pvd/r is the centrifugal force.

It gives the effective force in the r-direction resulting from
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fluid motion in the 0-direction. This term arises automatically on transformation from rectangular to

cylindrical coordinates ; it does not have to be added on physical grounds.



Table 2.4 The conservation of momentum in spherical coordinates (r, 8, ¢)

In terms of t:
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Table 2.5 Components of the stress tensor in rectangular coordinates (x, y, z)
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Table 2.6 Compbnents of the stress tensor in cylindrical coordinates (7, 0, 2)
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